Mathématiques

Question

Bonjour, j'ai vraiment besoin d'aide s'il vous plaît, j'ai essayé beaucoup de technique pour résoudre cette exercice mais je n'y arrive toujours pas et le note va être coefficient 3. Si quelqu'un a compris et à réussi cette exercice svp dite le moi.
Merci d'avance de votre temps pris. ​
Bonjour, j'ai vraiment besoin d'aide s'il vous plaît, j'ai essayé beaucoup de technique pour résoudre cette exercice mais je n'y arrive toujours pas et le note

1 Réponse

  • Bonjour,

    1. Prenons x réel différent de 0 et -1

    [tex]Q(x)=\dfrac{x^2+x}{x^2(x+1)}=\dfrac{x(x+1)}{x^2(x+1)}=\dfrac{1}{x}[/tex]

    2.

    [tex]E(x)=3x^2+2x-1=(x+1)(3x-1)[/tex]

    [tex]\left|\begin{array}{c|cccccc}\\x&&-1&&1/3&\\---&---&---&---&---&---\\(x+1)&-&0&+&+&+\\---&---&---&---&---&---\\(3x-1)&-&-&-&0&+\\---&---&---&---&---&---\\E(x))&+&0&-&0&+\\---&---&---&---&---&---\\\end{array}\right|[/tex]

    E(x) est négatif sur [-1;1/3], positif ailleurs.

    3.

    [tex]u_0=3\\\\u_1=u_0+2=5\\\\u_2=u_1+2=7\\\\u_n=2n+3[/tex]

    4.

    [tex]\displaystyle S(n)=\sum_{k=0}^{n} \ \dfrac{1}{2^k}=\dfrac{1-\dfrac{1}{2^{n+1}}}{1-\dfrac{1}{2}}\\\\=2(1-\dfrac{1}{2^{n+1}}})=2-\dfrac{1}{2^n}[/tex]

    5.

    [tex]0\leq x\leq 1\\ \\<=> 1\leq x+1 \leq 2 \\\\<=> \dfrac{1}{2} \leq \dfrac{1}{x+1} \leq 1[/tex]