Bonjour tout le monde j’aurais besoins d’aide avec les suite le 12 merci pour vos réponse
Mathématiques
ikramgourari33
Question
Bonjour tout le monde j’aurais besoins d’aide avec les suite le 12 merci pour vos réponse
1 Réponse
-
1. Réponse caylus
Réponse :
Bonsoir,
Explications étape par étape
[tex]u_0=1\\u_1=2\\u_{n+2}=1.5u_{n+1}-0.5u_n\\\\1a)\\v_n=u_{n+1}-u_n\\\\v_{n+1}=u_{n+2}-u_{n+1}\\=1.5u_{n+1}-0.5u_n-u_{n+1}\\=0.5u_{n+1}-0.5u_n\\=0.5(u_{n+1}-u_n)\\\\\boxed{v_{n+1}=\dfrac{1}{2} v_n}\\v_0=u_1-u_0=2-1=1\\\\1b)\\\boxed{v_n=\dfrac{1}{2^n} }\\[/tex]
2)
[tex]a)\\s_n=0.5*(1+\dfrac{1}{2} +\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{n-1}})\\\\=\dfrac{1}{2}*\dfrac{\dfrac{1}{2^n}-1}{\dfrac{1}{2}-1}\\\\s_n=1-\dfrac{1}{2^n}\\[/tex]
[tex]b)\\u_1-u_0=v_0=1\\\\u_2-u_1=v_1=\frac{1}{2} \\\\u_3-u_2=v_2=\dfrac{1}{2^2}\\\\u_4-u_3=v_2=\dfrac{1}{2^3}\\...\\u_{n+1}-u_n=v_n=\dfrac{1}{2^n}\\\\u_{n+1}-u_0=1+1-\dfrac{1}{2^n}\\\\\\u_{n+1}=3-\dfrac{1}{2^n}\\\\\boxed{u_{n}=3-\dfrac{1}{2^{n-1}}}\\[/tex]