BONSOIR JE SUIS EN TERMINAL SPE MATHS ET J’AI UN PEU DE MAL AVEC CET EXERCICE MERCI DE VOTRE AIDE. On considère la suite (un) définie par U
Question
1. (a) Calculer u1 et u2.
2. Démontrer, par récurrence, que pour tout entier naturel n, un > 0.
3. On admet que pour tout entier naturel n, un <1.
(a) Démontrer que la suite (un) est croissante.
(b) Démontrer que la suite (un) converge.
4. Soit (vn) la suite définie, pour tout entier naturel n. par vn = Un/1-Un
(a) Montrer que la suite (vn) est une suite géométrique de raison 3.
(b) Exprimer pour tout entier naturel n, vn en fonction de n.
(c) En déduire que, pour tout entier naturel n, Un =3^n/3^n+1
(d) Déterminer la limite de la suite (un)
1 Réponse
-
1. Réponse taalbabachir
Réponse :
U0 = 1/2 et Un+1 = 3Un/(1+2Un) pour tout entier naturel n
1) (a) calculer U1 et U2
U1 = 3U0/(1+2U0) = 3*1/2/(1+2*1/2) = 3/2/2 = 3/4
U2 = 3U1/(1 + 2U1) = 3*3/4/(1+2*3/4) = 9/4/5/2 = 9/10
2) démontrer, par récurrence, que pour tout entier naturel n, Un > 0
P(n) : Un > 0
Initialisation : vérifions que P(0) est vraie
U0 = 1/2 > 0 donc P(0) est vraie
Hérédité : soit un entier naturel n ≥ 0
supposons que P(n) est vraie c'est à dire Un > 0 et montrons que P(n+1) est vraie c'est à dire Un+1 > 0
Un > 0 ⇔ 3Un > 0 ⇔ 3Un/(1+2Un) > 0/(1+2Un) ⇔ 3Un/(1+2Un) > 0
donc Un+1 > 0 donc P(n+1) est vraie
Conclusion : P(0) est vraie et P(n) est héréditaire au rang 0
donc par récurrence P(n) est vraie pour tout entier naturel n
3) on admet que pour tout entier naturel n, Un < 1
(a) démontrer que la suite (Un) est croissante
Un+1/Un = 3Un/(1+2Un)/Un
= 3Un/Un(1+2Un)
= 3/(1+2Un) or Un > 0 donc 2Un > 0 donc 1+ 2Un > 1
donc 1 + 2Un > 0 et 3 > 0 donc Un+1/Un > 0 donc la suite (Un) est croissante sur N
(b) démontrer que la suite (Un) converge
(Un) est croissante sur N
Un < 1 majorée
donc la suite (Un) est convergente
4) Vn = Un/(1 - Un) pour tout entier naturel n
(a) montrer que la suite (Vn) est une suite géométrique de raison 3
Vn+1 = Un+1/(1 - Un+1)
= 3Un/(1+2Un)/(1 - (3Un/(1+2Un))
= 3Un/(1+2Un)/(1 + 2Un - 3Un)/(1+2Un))
= 3Un/(1+2Un)/(1 - Un)/(1+2Un))
= 3Un x (1+2Un)/(1+2Un)(1 - Un)
Vn+1 = 3Un/(1 - Un)
donc Vn+1/Vn = 3Un/(1 - Un)/Un/(1 - Un) = 3Un(1-Un)/Un(1-Un) = 3
donc la suite (Vn) est une suite géométrique de raison 3
(b) exprimer pour tout entier naturel n, Vn en fonction de n
Vn = V0 x qⁿ
V0 = U0/(1 - U0) = 1/2/(1 - 1/2) = 1
Donc Vn = 3ⁿ
(c) en déduire que, pour tout entier naturel n, Un = 3ⁿ/(3ⁿ + 1)
Vn = Un/(1 - Un) ; Vn(1 - Un) = Un ; Vn - VnUn = Un
d'où Vn = Un + VnUn donc Vn = Un(1+Vn) donc Un = Vn/(1+Vn)
soit Un = 3ⁿ/(1+3ⁿ)
(d) déterminer la limite de la suite (Un)
lim Un = lim (3ⁿ/(1+3ⁿ) or lim 3ⁿ/3ⁿ = 1
n→ + ∞ n→ + ∞
Explications étape par étape